
,AM_rERED"

Intelligent Systems and Advanced User Interfaces

for

Design, Operation, and Maintenance of

Command Management Systems

/7/

Semi-Annual Report

April 1 - September 30, 1993

William J. Potter, Code 514, Technical Monitor

NASA Goddard Space Flight Center

NAG 5-2226

Christine M. Mitchell

E24-XI3

Center for Human-Machine Systems Research

School of Industrial & Systems Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332-0205

(404) 894-4321

cm@chmsr.gatech.edu

December 1993

(NASA-CR-195857) INTELLIGENT

SYSTEMS AND ADVANCED USER

INTERFACES FOR DESIGN, OPERATION,
AND MAINTENANCE OF COMMAND

MANAGEMENT SYSTEMS Semiannual

Report, I Apr. - 30 Sep. 1993

(Georgi_ Inst. of Tech.) 17 p Z9/81

N94-71971

Unclas

0008479

GA% 1



Background

Historically command management systems (CMS) have been large and

expensive spacecraft-specific software systems that were costly to

build, operate and maintain. Current and emerging hardware,

software, and user interface technologies may offer an opportunity

to facilitate the initial formulation and design of the CMS for

specific spacecraft as well as facilitating the training and

effectiveness of CMS operations.

Current MOC (Mission Operations Control Center) hardware and

software include Unix workstations, the C/C++ programming

languages, and an X window interfaces. This configuration provides

the power and flexibility to support sophisticated and intelligent

user interfaces that exploit state-of-the-art technologies in

human-machine interaction, artificial intelligence, and software

engineering. One of the goals of this research is to explore the

extent to which technologies developed in the research laboratory

can be productively applied in complex system such as spacecraft

command management. Initial examination of some of the issues in

CMS design and operation suggests that application of

technologies such as intelligent planning, case-based reasoning,

human-machine systems design and analysis tools (e.g., operator and

designer models), and human-computer interaction tools, (e.g.,

graphics, visualization, and animation), may provide significant

savings in the design, operation, and maintenance of the CMS for a

specific spacecraft as well as continuity for CMS design and

development across spacecraft.

Background Analysis

The first six months of this research saw a broad investigation by

Georgia Tech researchers into the function, design, and operation

of current and planned command management systems at Goddard Space

Flight Center. As the first step we attempted to understand the

current and anticipated horizons of command management systems at

Goddard.

Understanding Current (Representative) CMSs

Command management systems have changed significantly over the past

decade. With the advent of powerful and affordable workstations,

the CMS system and function can be fully integrated into the

mission control center activities, both functionally and

physically. Thus, the CMS systems for SAMPEX, WIND, and POLAR, and

for all missions henceforth, will be located within the MOC and

completely operated by FOT members with mission planning

responsibilities.

This realization was important as it curtailed some of the

initially planned Georgia Tech activities attempting to understand

the history and scope of CMS systems. Initially, we planned



detailed analyses of CMSs for such missions as ERBS, GRO, and COBE.
Preliminary investigation revealed that the age of these missions
meant that the command management function was distributed and a

great deal of CMS activity for some of these missions was not

conducted within the mission operations facilities (e.g., COBE

CMS). Furthermore, some of the CMS functions seemed to be

overwhelmed by limitations that current and planned electronic

communications would eliminate (e.g., the arduous mission planning

process for ERBS).

As a working hypothesis, we decided to assume that the 'workstation

CMS' model for form, function and operation, as typified by the

SAMPEX CMS, was a good model for current and planned CMS systems.

Thus, after spending some time with the mission planning personnel

for COBE, ERBS, and GRO, we focused our attention on mission

planning operations in SAMPEX, SOHO, WIND/POLAR, with the intention

to include EUVE, FAST, and SWAS as time permits.

Detailed Examination of CMS Software

Currently, we have obtained and moved to Georgia Tech two GSFC

command management systems, specifically the CMSs for SAMPEX and

WIND and POLAR. The SAMPEX CMS offered many advantages. First,

since it was written in C++ for a Unix environment, and initially

developed on at Sun workstation, we were able, early in this

research project, to port the SAMPEX CMS to the Center for

Human-Machine System Research at Georgia Tech. Although we have

gathered a great deal of documentation on CMSs for many systems,

actually being able to run the SAMPEX system and browse the

software has provided great insight.

More recently, we obtained a copy of the WIND and POLAR CMS and

installed it on our system. Comparison of the two systems

demonstrated the lack of commonality that characterizes command

management system software. Having both the SAMPEX and WIND/POLAR

CMSs available for review provides the Georgia Tech researchers

with an important opportunity to compare and contrast two

operational systems and to explore the extent and nature of re-use

or the lack there-of.

In the next few months, preliminary copies of both the FAST and

SOHO CMSs will be available. We plan to extend our current

examination of operational and in-development CMSs, by carefully

reviewing the resident systems. We will explore the extent to

which the FAST CMS, as a SMEX mission with the explicit goal of

high re-use, re-uses concepts, functions, code, etc. from SAMPEX.

More generally, we will review each new CMS as the various

releases become available and understand how they relates to

existing (e.g., WIND/POLAR) and other planned (e.g., SOHO) CMSs.

Review of Planned CMS



To ensure that we understand both current (i.e., modern) CMSs and

those under development, we have spent a great deal of time trying

to learn about CMSs that are currently being developed. We have

attended critical design reviews, spoken to CMS developers and FOT

responsible for writing requirements, and reviewed documents for

both the FAST, SWAS and SOHO command management systems. To ensure

that we maintain an accurate and up-to-date perspective, our

participation in these processes will continue for the foreseeable

future.

Analysis of CMS Operations

In addition to studying the SAMPEX CMS software, we conducted a

detailed task analysis of SAMPEX CMS operations. This study

documents the operations of SAMPEX mission planning: daily loads,

weekend loads, and atypical loads, e.g., 'patch' loads. The goal

is to understand operationally what is done, and how. In

particular, the study identifies needed inputs to the process

(e.g., the RUST, FDF, load requirements), noting the ease with

which this information is obtained and entered into the CMS; the

CMS load generation process; the CMS load verification process (who

does what, e.g., FOT verification, how, with what knowledge); and

load uplinking/verification. The study tracks routine operations

emphasizing what makes the job 'hard' or cognitively complex, and

why.

A report documenting this analysis is in progress. The objective

of the study is to understand how mission planning is conducted and

the extent to which differences in CMS design affect operations.

To ensure generality and highlight differences, a similar study is

being conducted of WIND/POLAR CMS operations.

Summary

The next six to twelve months of this project will see the

continuation of all of the above activities. As software systems

become available, we will obtain copies of the software. By

browsing the code, we will continue to explore commonalities and

differences, attempting to focus reasons for the lack of extensive

re-use and to identify opportunities to facilitate re-use in new

systems. We will continue to participate in design reviews by

attending the reviews themselves, reading the associated

documentation, and interacting with CMS developers and FOT

responsible for defining CMS requirements.

Articulation of CMS Commonalties and Causes of Low Re-Use

The next component of this project is an analysis documenting

commonalities and differences among CMS that we have studied. The

analysis of commonalties and differences together with associated

causes of low re-use provides the assumptions that underpin the



proposed research and development activities outlined in the
section that follows. This analysis is on-going activity, but
preliminary findings are summarized below.

The Problem

CMSs are hand-crafted mission by mission at great cost for each

individual mission. There is minimal reuse of CMSs from mission to

mission. Typically re-use fails to occur across all levels: from

conceptual design, to functional specification, to lines of source

code.

o Examination of SAMPEX and the WIND/POLAR CMSs

demonstrates that these are very different systems. At

the code level the SAMPEX CMS is written in C++ and is

object-oriented in design. The WIND/POLAR CMS is written

in C and lacks any of the data structures (e.g., objects)

that characterize the SAMPEX system.

o SAMPEX and FAST are both spacecraft in the SMEX mission.

One of the SMEX goals is extensive re-use. Comparison of

the SAMPEX and FAST CMS (currently only available to GT

researchers through examination of the CDR documents)

demonstrates that re-use, measured at the lines of code

level (i.e., delivered source instruction) is still quite

low, approximately 49% re-use for FAST, 31% for SOHO,

43% EUVE.

o Examination of CMS descriptions, as typified by critical

design review materials, demonstrates that even

descriptions of CMSs lack a common vocabulary. Comparing

and contrasting CMSs, based on available documentation,

is very difficult. There is no uniform set of CMS

component or CMS functions that characterize how CMS are

described and measured.

o Re-use, when it occurs at all, is measured (and

implemented (?)) at the code level--potentially forsaking

enhanced productivity and cost savings for re-use at

conceptual and functional levels.

o Because a CMS is essentially hand-crafted for each

mission there is little accumulation of experience,

either what worked or what did not, from mission to

mission.

A Vision of a Solution

The environment in which command management system design occurs is

one where multiple design teams independently (and at times

concurrently) hand craft from scratch CMSs in response to the needs

of space science missions.



Despite the uniqueness of each CMS, they all exhibit a core set of

capabilities (e.g., load generation, command database utilization,

activity planning, event pool management, activity definition

support, etc.). This set of capabilities represents a common and

persistent collection of user needs as well as a recurring set of

design problems. In many cases, these design problems are resolved

independently by the various design teams without regard to prior

solutions. Solving recurring design problems in this fashion

incurs unnecessary development costs, risks repeating flawed or

ineffective designs, and leaves to chance the rediscovery of

previously proven design features. It is this type of situation,

where the dissemination of past experience could provide great

advantage, that makes command management system design an ideal

setting in which to explore the utility of case-based reasoning

systems.

A case-based reasoning system accumulates experience and makes it

available to designers of future systems. Thus one essential

component of the proposed solution to facilitate CMS software
re-use is use of case-based reasoning technology to accumulate

experience and make it available to developers. The section which

follows proposes to use case-based reasoning in two ways. The

first, a near-term effort, uses a case-based system to make design

features of existing CMSs available to CMS developers. The second,

a longer-term project, uses case-based reasoning as the knowledge

base for a CMS designer's associate. The associate guides CMS

designers by suggesting design features from existing CMS

applications. When a new design feature is necessary, the

associate allows designers to formulate new features as extensions

or refinements of existing features. Using a case-based knowledge

repository, the associate automatically learns as new features are

included in its knowledge base.

In addition to building future command management systems based on

the experience of past systems, design would greatly benefit from

evolving a common look and feel to command management systems and

incorporating standard, commercially available software tools and

technologies.

Currently, each CMS specifies and implements its own version of

common functions. These functions include interface functionality,

data maintenance, and report generation. Consider for example the

following command management functions.

The interface software for SOHO is almost 50% of the system. In

FAST, 28% of the source code implements interface functions; less

than all of this is re-used from existing systems. A common

interface across CMSs would facilitate re-use of existing software

from conceptual components to actual source code. A common look

and feel would also facilitate operator transition from system to

system and/or allow the same mission planner to perform the mission

planning function for several missions. Informal discussion with

FOT suggests that they also would prefer a common look and feel.

Currently even with the closely related SMEX missions, FOT staffing



plans call for dedicated mission planner for each mission. It is
possible that a common look and feel would eliminate the need to

have dedicated mission-specific planners.

A common look and feel, if implemented in standard commercial

software (e.g., Motif interface library), would begin to evolve a

common interface software library. With careful attention to

re-use, CMS interfaces would for the most part not only look the

same, but the software implementing the interface would for the

most part be the same.

Data management and report generation functions show similar

problems. For WIND/POLAR, 25% of the software supports data base

management and report generation. For SOHO at least 10% is devoted

to this function. Yet the functions are essentially the same

across all CMS applications. Discussion with designers suggests

that a great deal of time and expense is devoted to the development

of customized code to maintain data bases and generate required

reports Ironically, CMS users are not always pleased with the

outcome. For example, the SAMPEX CMS-generated pass plan is

discarded and FOT created their own Macintosh-based form. If there

was some standardization, a commercial data base product might more

cheaply and efficiently accomplish the same functions. Commercial

data base report generation capabilities might allow the FOT to

design their own reports,
and refine them on an as needed basis.

Finally, initial review of CMS software and associated

documentation suggests that a generic CMS software core, similar in

concept and form to the TPOCC software, is both feasible and

desirable. Generic CMS software would ensure high re-use by

ensuring that each new CMS shared common core components,

functions, and implementation with all other CMSs. Using the

object-oriented metaphor, the CMS generic software would define a

CMS class. Each mission would instanciate the generic system,

extending or refining it as necessary. As with object-oriented

programming, , the common core structure from which all instances

(i.e., specific CMS applications) are derived would ensure a great

deal of commonality from high-level concepts to the lowest level

implementation details. Combined with the case-based designer's

associate, described in more detail in the section that follows, a

generic CMS core would assure a high degree of commonality due to

the core system, and would accumulate design enhancements and

extensions to make design experiences, both successful and

unsuccessful, available to developers of future systems.

Summary

The preliminary conclusion of this analysis is that extensive

re-use can and should be facilitated. Re-use will be greatly

facilitated by making previous design experience available to

developers via a case-based reasoning system. Development of a
common look and feel and the use of standard commercial software



will enhance commonalities across systems, and encourage re-use of
components developed for one system in subsequent systems. A

generic CMS architecture, which each new mission instanciates and

extends, will anchor future designs to a common parent. Finally,

the case-based designer's associate will guide mission unique

extensions and automatically archive new design choices in a

development environment which will make those decisions available

to designers of future systems.

Project Plan to Facilitate Increased Re-Use

Based on the analysis summarized above, this project proposes a

three part approach to facilitate CMS software re-use.

i. CMS Browser: A Case-Based Reasoning System to

Facilitate Understanding Current CMS

Designs

2. Specification of Generic CMS Core Software

3. CMS Design's Associate



CMS Browser: A Case-Based Reasoning System

The CMS Browser is intended to be the first step in a comprehensive

plan to facilitate command management system software re-use. The

purpose of the CMS Browser to make knowledge about existing command

management systems available to CMS developers.

The CMS Browser is a case-based reasoning system. It will have two

major components. The knowledge base is a case base of experience

gleaned in the design of existing command management systems

including SAMPEX, SOHO, WIND/POLAR, FAST and SWAS. At the level of

knowledge/experience contained in critical design review

documentation, the CMS Browser will demonstrate the commonalities

and unique features of each of these systems.

The second component is the CMS Browser interface. Through its

interface the Browser will present to CMS developers a common

conceptual model of the components and functions that comprise

command management system design. The CMS Browser is hierarchical.

It will facilitate the acquisition and efficient maintenance of a

conceptual model of a CMS (e.g., activities, triggers) at the

highest levels, while making available, via advanced technology

tools including visualization, animation, and the case base,

successively lower levels of description and mission-specific

examples. Successive levels of detail might include trigger types

(e.g., event or pass) and actual instances (e.g., cases) showing

implementations and associated differences for actual missions

(e.g., SAMPEX vs. SWAS vs. FAST). Figure 1 depicts key elements of

the CMS Browser.

The goal of the CMS Browser is to foster, i.e., support with

effective and intelligent interfaces, the view that CMS are more

similar than different. The Browser organizes information around

features common to command management systems. The both the

interface and structure of the CMS Browser highlight commonalities

among CMS implementations. Differences among systems are

represented as cases and can be compared and contrasted to explore

true differences necessitated by mission requirements versus

differences that occur serendipitously--differences that

potentially degrade re-use and increase development costs.

Thus, as the first step in facilitating wide-spread re-use of CMS

software, the CMS Browser addresses the re-use problem by helping

developers acquire a common conceptual model of CMS components and

functions. Experience of existing CMS implementations can be

viewed as differences or extensions in the context of this common

model.

As experience evolves and the knowledge base for the CMS Browser

grows, the Browser might turn into a powerful tool through which

NASA could monitor re-use and distinguish between necessary and

serendipitous differences in proposed command management systems.



The Browser might form the core of a computer-based on-line
management and presentation tool through which a proposed CMS
design can be described, documented, and presented for review.

Each design feature, say at the level of detail of a critical

design review, could be structured and presented via the CMS

Browser. Each feature could be described either as a re-use of an

existing feature or as an extension or addition. Extensions and

additions become

new cases in the Browser's case base. The Browser could function

as an audit tool with which each 'new case' could be inspected,

compared to existing alternatives, and evaluated to ensure that

the new feature constitutes a legitimate difference.

The CMS Browser is a first step to facilitate re-use in that it

makes knowledge about existing CMS design readily available. The

CMS Browser, used as a on-line documentation and presentation tool,

encourages re-use by isolating, inspecting and evaluating each

mission unique feature, i.e., a feature not exhibiting re-use. The

next steps in this process, however, support re-use by providing a

core set of generic CMS modules and a development environment

through which mission-unique requirements are specified, and

recorded for future use in a case base.



A Generic CMS Software Core

Two experiences regarding software re-use at Goddard Space Flight

Center are very instructive. The first concerns the SAMPEX CMS.

Although developed as a proof-of-concept demonstration system, the

SAMPEX CMS had surprising little impact on future generations of

command management systems. Apparently neither the software itself

nor its associated documentation had substantial impact in

facilitating re-use of many of its many innovative concepts and

design features. As a design artifact, the SAMPEX CMS might be

considered an example The SAMPEX experience suggests that using

examples to facilitate re-use may not be an effective strategy.

The second experience is the TPOCC software. Widely regarded as a

success, the TPOCC software provides each mission with core

capabilities, functions, and code. Mission-unique features are

added only when the core system fails to provide necessary

functionality. Using the object-oriented paradigm of generic

structure and function which is instanciated and extended, the

TPOCC software facilitates widespread re-use.

As a paradigm for re-use, the TPOCC model of defining a generic

core system is much more promising than the SAMPEX strategy of

providing an insightful example. Thus, this project proposes the

specification of a generic CMS software architecture from which

future command management systems can be built.

The next step in the development of a generic core is collaboration

with CMS developers to begin to define the components and functions

that comprise such a core. To ensure applicability, it might be

advisable to develop the generic core in conjunction with the

development of a mission-specific CMS, delineating at every step

core components from mission-specific extensions.

The CMS generic core system will help to ensure re-use by

establishing a collection of components and functions common to all

mission. Design re-use due to learning from previous experience

complements re-use attributable to the core. Re-use based on

learning from past experience can only occur when existing design

experience is accessible. Thus, the final component of the

proposed project to facilitate CMS software re-use is the

development of a CMS designer's associate that makes previous

experience accessible and encapsulates the experience of new design

choices.



The CMS Designer's Associate

This proposal suggests a framework for a computer-based designer's

associate (DA) which supports design efforts in which experience

determines, more than any other factor, designer performance.

Figure 2 illustrates the DA framework.

Within this framework, the DA augments the designer's experience;

it does not replace the designer nor subsume any normal duties.

It is intended only to extend the designer's reach. Humans are

good at creative adaptation but poor at remembering a full range of

design cases because they tend to be biased in their remembering.

On the other hand, those that lack relevant experience may not have

sufficient knowledge to solve the design problem effectively. The

DA can augment the memory limitations of humans, providing them

with design cases they would otherwise fail to remember. The DA

framework attempts to use the best qualities of both human and

computer for solving design problems.

The DA framework has several facets: a domain specific conceptual

framework, a design ontology, the DA experience-base, a design

editor, and the designer's associate engine (i.e., the DA). The

conceptual framework is used to organize and index design

experience and may be seen as both a standard vocabulary and domain

taxonomy for describing goals, needs, concepts, and the like within

the domain of interest (e.g., the concepts of activity and activity

dictionary are important concepts in command management).

The design ontology describes the nature of the design process and

the design product in a domain and problem independent fashion. It

allows one to capture the iterative and incremental character of

the design process as well as the interdependent quality decisions

about the problem context and its solutions. Both the design

product (i.e., the product or output of the design process--e.g.,

a mission-specific command management system) and the DA experience

base is defined in terms of the design ontology. Thus, expanding

the DA experience base is a matter of merging the existing base

with existing or past design products.

The design editor (a user interface) is the means through which the

designer formulates his/her designs, views those of others, and
interacts with the DA. The editor utilizes the conceptual

framework to assist the designer in forming queries concerning past

designs, organizing problem context descriptions and design

decisions, and formulating plans. This architecture allows the

editor and DA to be specialized by using a domain specific

conceptual framework. The designer's associate is composed of two

components: a designer's associate engine built upon a case-based

reasoner and the experience base. This architecture allows the DA

to be further specialized by using problem specific experience

bases.



For our purposes, a DA is the junior partner of a design team
consisting of a human designer and the computer-based DA. The role
of the DA is to recall past design decisions or experiences whose
problem context or solution is similar to that being considered by
the designer. DA decision making is limited to determining the
relevance of past design experiences in light of the designer's
current goals (i.e., that set of issues and requirements that are

the current focus of the designer's efforts). The role of designer

is to create solutions to new problems and re-use or adapt

solutions to re-recurring problems based on design experiences

recalled by the DA as well as those with which the designer is

personally acquainted.

The DA expands its experience base through its interaction with the

designer by remembering their decisions. The objective of the DA

framework is to facilitate the collection and dissemination of

design experience. Design re-use can clearly improve designer

performance over that which can be achieved when re-use is not
considered. That is, both designer productivity and design

quality may be enhanced. Productivity is potentially enhanced
because less effort is involved in assimilating design knowledge

(if properly represented) than recreating it. Quality is often

enhanced though the design equivalent of natural selection. Over

time, good designs are re-used, are adapted, or guide and

therefore become dominate while bad designs are discarded

relatively quickly. Yet, design re-use is not common.

Despite its merits, design re-use as well as the utilization of the

underlying experience has been hindered for want of a formal

mechanism for disseminating relevant design information throughout

the CMS design community. Re-use has also been hindered by the

lack of a common conceptual framework. Without such a framework

there is no widely accepted and understood vocabulary for

describing design goals, user requirements, or design solutions.

Differences in vocabulary not only induce design variability, but

also obscure design similarity. The DA framework is intended to

address both of these issues through facilitating the collection

and dissemination of design knowledge in the form of past design

experience and fostering the growth of a common conceptual

framework within the CMS design community. By serving as a focal

point for the collection and dissemination of design experience

based upon a common conceptual framework the DA will foster the

implicit collaboration of CMS designers in a manner that transcends

both temporal and project boundaries.



['E':-: OE, "3-: NI :O-:F'I'I G_ TE,:H I'-,',E F'. 1-: IG

A

CMS Browser:
Case-based Reasoning System

CMS Designer_

¥1Ie Search Component function Aeialed C_ ,m=ponenfs
i

gelaled FunCllOns
i i ,

1
Indexes L

Commands are wri[ten in moemonics,

Many commands have submnomonIc_.
Submnemonk_ are variableswhich

can l:mchanged, Submnemoni_ have

several different forms.

SAMPEX commands use submnomonics

In the form of slnoIo words.

For example I_ command for transmitter

power control Is: XXMPWR

The submnomonlc can have a value of

OFF or ON.

\

SAMPEX

SWAS

Olsplaq .



: ['E'- NE. .,?_: OI:O-:F'I'I ,}A TE,L-HI!-:','E F'.I-_ IE,

/
I Designelr __._

Responses

Decisions, Querie._

concerning past
experience

Design Editor [_.,.

_J Query

Responses

Design
Associate

Engine

Decisions Past Design New Design
Experiences Experiences

Conceptual
Framework

Cl.lfl'en (

Design

Experience
Base

Defined
in Terms
of

Defined
in Terms
of

Design
Ontology



_ ['E"-06 "3-: 01:0-4F'1'1 ,__g4TE,:H I:-.','E F'. 1E. 16

Understanding Command Management System_ How they operate. How they are developed

Port CMS applications to Georgia Tech
SAMPEX CMS

WIND/POLAR

FAST (as available)
SOHO (as available)

Understand Commonalities and Differences Across CMSs

Attend CMS Design Reviews
Review CMS Desi_n Documents (SAMPEX, WIND/POLAR, SOHO)

Interviews with CMS Developers
Interviews with FOT responsible for developing requirements

Conduct Task Analysis of CMS Operations

SAMPEX
WIND/POLAR

Articulation of CMS Commonalities and Causes of Low Re-Use

• CMSs are more similar than different.

• Low re-use in part stems from failure to standardize on common components.
• Low re-use jn part stems from a lack of availability experience/information of previous

designs.

Project Plan to Facilitate Increased Re-Use

Assumptions

• Re-use would be facilitated by evolving a corporate memory of existing systems that is easily

accessible to developers of new systems.

• Re-use would be facilitated by defining a common CMS core software system, like TPOCC

software, such Lhat each mission would instanciate (i.e., refine and extend) the common core.

* Re-use would be facilitated by providing a developer with a designer's associate through which

the designer would instanciate mission-specific features of the core system. The case base
would facilitate re-use of existing design concepts and components. As necessary, new design

features, i.e,, features that are added or extensions of existing features, are specified via the

associate's development environment and automatically added to the associate's case base

Activities

1, CMS Browser. A Case-Based Reasoning System to Facilitate Understanding Ctuvent CMS

Designs

2. Specification of Generic CMS Core Software
* intended aspart of TPOCC software

* mission-specific CMS as an instanciation of core system
* use commerclal-of-the-shelf softwat_ (e.g, editors, interface widgets, data base

systems, etc.)
* evolve a common look and feel



_ [EE 06 "9-_-:Ol:04F'rl ,:}ATE,ZH I:-;,'E F'.16 16

3. CMS Design's Associate: A Case-Based Design Environment to Specify New CMS Applications

Archive Design Decisions


